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A recent paper by Needham, Riley & Smith (1988) considers the flow of a jet of 
inviscid, incompressible fluid emerging from a circular pipe into a weak crossflow. In 
this paper we extend their results. In particular we show how the Kutta condition 
at the pipe lip may be satisfied, and we present details of the flow field obtained from 
both the formal solution and a field calculation. 

1. Introduction 
In a recent paper, Needham, Riley & Smith (1988, herein referred to as I), we 

reported an investigation aimed at  identifying an inviscid mechanism for the 
deflection of a jet in crossflow. In it a formal solution is presented to the problem of 
a jet emerging from a cylindrical pipe of circular cross-section into an inclined 
ambient flow, for the idealized case of an inviscid, incompressible fluid in steady, 
irrotational flow. A small-disturbance treatment is applied, assuming that the 
component of the velocity of the ambient flow normal to the pipe axis is small 
compared with the jet speed, and that the departure of the jet boundary from the 
cylindrical prolongation of the pipe is small. The solution obtained is such as to 
violate this latter assumption sufficiently far downstream from the pipe orifice, 
however small the crossflow. We are still unable to improve upon this shortcoming, 
for which the fully three-dimensional elliptic free-boundary problem would have to 
be attacked, but we have improved the treatment in two respects. 

Most importantly, we have found a solution that satisfies a Kutta condition a t  the 
lip of the pipe. The solution found in I for the flow on the lengthscale of the pipe 
diameter involves a singular behaviour at  the lip where the stream-surface boundary 
condition on the pipe gives way to a pressure-continuity boundary condition on the 
jet surface. The consequences of this have been explored by Lytton & Smith (1988), 
some of which is now irrelevant. The singularity is here eliminated by the 
introduction of an eigensolution in the far-field solution of I, the existence of which 
only becomes apparent when the series expansions of I are carried to higher order. 
The effect of this is to introduce a free parameter in the solution close to the lip, the 
choice of which enables the singularity there to be removed. The inclusion of this 
eigensolution in the far-field solution is simply equivalent to a change of origin ; its 
presence obviates the need, conjectured in I, to solve a nonlinear problem close to the 
orifice lip. The principal conclusion of I, that the jet is deflected downstream if and 
only if there is a component of the ambient flow parallel to the pipe axis (a coflow), 
is thus unaffected. Coelho & Hunt (1989) consider a jet emerging normally from a 
plane wall, so that the coflow is zero. They find there is no deflection when the flow 
is inviscid, in agreement with this conclusion. 
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We are also now able to present the solution near the pipe orifice in graphical form. 
The analytical solution is still expressed in the form of complicated integrals, 
essentially unchanged from I. The evaluation of some of these expressions has been 
undertaken by Lytton & Smith (1988) for h = 1, where h is the ratio of the speed of 
the coflow to that in the pipe, far from the orifice. This evaluation has now been 
extended to the range 0 < h < 1. In addition, for the flow near the orifice, the 
potential-flow problems inside and outside the cylinder which represents the pipe and 
jet boundary, coupled on the jet boundary, have been solved numerically using a 
finite-difference approximation. The agreement between the analytical and nu- 
merical solutions is reassuring and several of the flow features revealed are of 
interest. 

In $2 of this paper we briefly summarize the results of I, and show how they may 
be extended to eliminate the singularity at the lip of the pipe. Section 3 contains a 
discussion of the methods used to provide numerical information about the flow near 
the orifice : first to evaluate the analytical expressions and secondly to solve a finite- 
difference approximation to the governing partial differential equations. In $4 we 
present and discuss various features of the flow revealed by this numerical solution, 
and in $ 5  we list our main conclusions. The discussion in I of the physical aspects of 
the problem and of the implications of the solution remains valid and so is not 
repeated here. 

2. Equations and solution procedure 
Our development of the solution outlined in this section follows very closely the 

treatment in I, and will need to be read in conjunction with that paper. 
Fluid emerges with mean speed U,, from the pipe orifice. The pipe is at  angle 

tan-’ ( € / A )  to the undisturbed outer flow direction, whose speed is UJh2 +e2)f with h 
arbitrary and E -4 1. The undisturbed pressure outside the pipe, gim, and within it, 
p-m, are related by (12.1)t, with a = 0 as subsequently required in I. Flow variables 
are made dimensionless as in I and velocity potentials v,@ are introduced for the 
inner and outer flows respectively, which satisfy Laplace’s equation (12.2). Boundary 
conditions at  the pipe surface, and at  the jet surface, are as given by (I2.3), (12.4) and 
(12.5) respectively, with the far-field conditions given by (I2.6), (12.7). The potentials 
p,@ and the jet-shape function F are expanded as 

+ E 2 ( p z 1 ( r , 8 ) + ~ Q ) 2 2 ( T , 8 ) +  ...l+o(63), (2.1) 

5 @ = - + E { E @ ~ ~ ( ~ ,  e)+tv13(r, e)+ ...)+Ez{qz1(r, e)+t-@22(T,e)+ ... } + o ( E 3 ) ,  (2.2) 

F = r - i - t -2f i (~)- t - ” f , (e)+ ...+ E ( ~ - ~ ~ ( B ) + . . . } + o ( E ~ ) ,  

E 

(2.3) 

where 6 = EX is the far-field coordinate of I, and ( T ,  8 , ~ )  are cylindrical polar 
coordinates with 8 measured from the leeward generator of the pipe (cf. figure 1 of 
I). These expressions differ from the expansions (13.5)-(13.7) by the inclusion of 
terms O(e2) in (2.1), (2.2) and O(s)  in (2.3). In I the coefficients of the terms O(e)  in 

t (12.1) denotes equation (2.1) of I. 
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(2.1), (2.2) and O( 1) in (2.3) were determined by substitution of the expansions into 
(12.2)-(12.7) and equating coefficients of powers of 5. The results obtained are set out 
in I. We move now to the additional terms in (2.1)-(2.3), whose inclusion does not 
affect the far-field discussion in I. If we follow the same procedure and note that the 
pressure condition (12.5) at  O ( 4  is to be interpreted as a condition on ~ I ~ ~ , I @ ~ ~ ,  then 
for q21, @21 we have 

(2-4) 

v21r = hfc, @21r = f c ,  or V21r = w 2 1 r  on r = 1, (2.5) 

vgz1 = VV2, = 0 

with, from (12.4) 

together with conditions that the solutions remain finite as r + 0, a. The conditions 
imposed on p121,@21 are not sufficient to render them unique, and they thus aasume 
the role of eigensolutions on the scale of 6. If we anticipate the appropriate angular 
dependence as cos28 then 

C 2c , @21 = --r2cos28, f, = -- + A2 cos 28. (2.6) 
ch cos28 

l + h  v21 = 

The constant c in (2.6) is not determined at this stage. 
We turn next to the near-field solution with x = O(1). Correct to O(e2) we write v, 

@ as in (13.23). Each of the unknowns $,$ satisfies (12.2) together with (13.24), 
(13.25) in the far field, (13.27) at the pipe surface and (I3.28a, b), with a = 0, at the 
jet surface. Matching with the far-field solution now requires 

(x+c)r2cos28 as x + a ,  (2.7) $--- 1 A x+ccos2e, $--- 
l + h 2  r2 1 + A 2  

in place of (13.26). We note that the &dependence of $,$ will be represented 
completely by a factor cos28. 

The problem posed above for the neighbourhood of the pipe orifice differs from 
that in I only by the inclusion of the arbitrary constant c in (2.7). We see that the 
introduction of the eigensolutions qel, cjj21 in the solution on the larger lengthscale 
corresponds to a shift of origin in the near-field solution. 

The method of solution for $, $, by the Wiener-Hopf technique follows exactly as 
in I with x replaced by x+c in the boundary conditions where appropriate. Fourier 
transforms are defined exactly as in I, but now the transformed quantities contain 
factors efsC (6 is an arbitrary small parameter as introduced in I) as appropriate. The 
following Wiener-Hopf equation results (cf. I B12) : 

i e-uc X(s)  euc + 
24s + is) (1 + h2) S(s - is) ’ K(8) T+ + 7- = 

where s is the transform variable and K, T+, 7- are exactly as in I. Thus K+(s) ,K-(s) ,  
the multiplicative factors of the kernel K(s)  = x+(s)K-(s),  are as in I and we again 
have K+(iS) = K-( -id). The subsequent analysis of I for the transforms of our 
potential functions follows through, except that K* ( &is) is replaced everywhere by 
edcX*( kid). This modification is crucial as taking the limit S + O  shows. Thus 
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(2.10) 

where g(p) is a complicated expression involving modified Bessel functions of the 
first and second kind, of order two, given by (I B19), and J z  is the Bessel function of 
the first kind of order two. Equation (2.10) for A is as in I, except that subsequent 
analysis has allowed a complicated integral to be replaced by a simple expression. 

The result (2.9) shows that expressions (I B22a, b ) ,  (I B23q b )  for the potential 
function, in each of the four regions r 8 1, x >< 0, are unchanged except that A must 
be replaced by A +c, and the terms that are linear in x in the potential by x+c, as 
in (2.11) below. From this observation an important conclusion follows. If we 
evaluate the velocity components a t  the lip of the orifice, that is on r = 1 as x+O+ , 
we find 

4 2  A(A + c) COB 26 -1 
- N -  33 1 / 2 ( A + c ) c o ~ 2 6 ~ - ; ,  y-- 2: 1 >  (2.11) 
ar (1 + AZ) ni ar (1 +A2) nt 

with a$/ax,ayk/ax bounded. We now see that it is possible to satisfy a Kutta 
condition at  the lip by the choice c = - A .  

This removes an unsatisfactory feature from I. The larger-scale solution of that 
earlier paper is unaffected to the order it is taken. But the inclusion of the 
eigensolution (2.6) at higher order in the far-field solution does have a significant 
effect upon the solution close to the pipe orifice. With the choice c = -A, which 
enables us to satisfy the Kutta condition at r = 1, x = 0, the solutions, and their 
asymptotic forms, in (13.36)-(13.43) become 

(i) z < O , r <  1 

(2.12 a )  

(2.12b) 

where Sz, are the positive zeros of Z2(Q). 
(ii) x 2 0, r < 1 

(X + C) r2 cos 28 I?@) J2(pr) R-( - ip) - - e pxdp, 
1 +A2 P2 

&r, 8, x) = - 

(2.12c) 

GP, 8, X) - - 1 +A2 {1-q1+A2)x4 } as x + m .  (2.12d) 
(x + c) r2 cos 26 

(iii) x < 0, r 2 1 

h(r4 + 1) cos 28 
as x-+---oo, rfixed. 

16r2x2( 1 + A 2 )  w, 874 - 
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Pipe Jet boundary 

" 
- 1  0 

FIGURE 1. Contours of $* near the orifice for A = 1. 

X 

1 

(iv) x 2 0 , r  2 1 

as x-tco, rfixed, 

(2.12h) 

A(x+c) cos28{ + (1 - A 2 )  (1 +A2)-l + r4 
(1 + A2)  r2 1 6x4 1Cr(r, 8 7 4  

where c = -A throughout. 

3. Numerical techniques 
3.1. Evaluation of analytical expreesims representing the Jlow field 

For the flow near the pipe orifice, the outcome of the analysis in both I and the 
present paper is a number of infinite series and integrals. Considerable care is needed 
in their numerical evaluation, so an indication of the methods used is included here. 

For A = 1, for which some simplification occurs, Lytton & Smith (1988) present an 
evaluation of some of the expressions in I, including that for the important 
parameter A. We have repeated these calculations for the present expressions. 
Sufficient accuracy was obtained when the series for the flow inside the pipe was 
summed over the first 400 zeros of Ji  and Richardson extrapolation used on the 
partial sums, and when, for the flow in the jet, the integration extended over 0 < 
p < 800, with ten integration points in each unit sub-interval, making 8000 in all. 

(3.1) 
The contours are not at equal intervals, because we wish to represent the flow some 
distance into the pipe, where the disturbance velocity is small, as well as in the jet, 
where it is large. With $ = 0 on the centreline, the contours are at  

O(0.002) O.Ol(0.004) 0.03(0.008) 0.07(0.016) 0.15(0.032) 0.598. 

Figure 1 shows a contour plot of the function f i*(r ,  x) where 

$ = $*(r, x) ~ 0 ~ 2 8 .  
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- A  

0 0.2 0.4 0.6 0.8 1 .o 
A 

FIQURE 2. Variation of A with h : 0,  present ; , Coelho & Hunt (1989). 

The four discontinuities in the interval are apparent. Note that the contours are 
normal to the pipe, consistent with the vanishing of the normal velocity; the spacing 
is even at the pipe lip, consistent with the Kutta condition there ; and the contours 
are continuous and smooth across the orifice plane,. confirming the validity and 
accuracy of the solution. The corresponding plots in Lytton & Smith (1988), based 
on I, show a distinct local structure near the lip, with the contour spacing decreasing 
to zero, and some of the contours that originate in the pipe subsequently crossing the 
jet boundary. 

We now turn to the evaluation of A for smaller values of A. It emerges that for 
small values of A the integrand in (2.10) has peaks at the zeros, xn, of J,, so using 
equal sub-intervals for the integration is inefficient. Instead, the basic sub-interval 
is chosen to be that between a zero of J8 and a zero of Z,, and an adaptive integration 
scheme is used within each of these sub-intervals. The scheme is designed to integrate 
accurately away from xn until the integrand becomes negligibly small. Then, with 
A(N) denoting the value of A calculated in this way using N zeros of J,, we assume 
an asymptotic expression 

and determine al, a, and A by using A(N), A ( N -  100) and A(N-200) .  For A >, 0.5, 
N = 2000 is adequate ; for smaller A, N = 4000 is used. For A = 0, the integrand 
resembles a series of delta-functions and the integral can be shown to reduce to an 
infinite sum, giving 

We evaluated this sum up to n = 4000 and then used Richardson extrapolation on 
the partial sums to estimate the sum to infinity. The values of A obtained in these 
ways are shown in figure 2. In the present solution, as in I, A appears as a factor in 
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the expressions for the axial component of the velocity outside the pipe and jet, so 
the present solution with h = 0 is a solution to the inviscid problem of Coelho & Hunt 
(19891, taken to the same order in e. In  that paper C, corresponds to the present A 
and their value is shown in figure 2 for comparison. In view of the entirely different 
analytical and numerical procedures used, the close agreement is encouraging. 
Regarding A as an origin shift for the axial coordinate, as indicated in $2, we see that 
its value is significant, on the scale of the pipe diameter, but its variation with h is 
small. 

3.2. Direct calculation of the $ow field 
In order to provide an independent check on some of the results obtained by the 
methods of $3.1, and to determine further details of the flow field (in particular for 
r > l), we have made a direct numerical attack upon Laplace’s equation (I2.2), 
subject to the boundary conditions (13.24), (I3.25), (I3.27), (13.28) and (2.7). Because 
of the form of the boundary conditions (2.7) we have chosen to work with the 
perturbations u = ~ % ,  ii = @, to the axial velocities, rather than the potentials 
directly. Each of u, .ii sbtisfies (12.2). We also transform the infinite flow-field domain 
into the finite computational domain - 1 < X < I ,  0 < R < 1,  where the new 
variables are defined by 

x = t a n i d ,  r = t a n i d .  (3.4) 

If we further write u = U(R, X) COY 28, ii = D(R, X) cos 28 then U satisfies the equation 

a2u au a2u 

aR2 aR ax2 
sin2nR-+insin2d-+4 tanP$R cos4$tX-- 

au 
ax -2nsinKXcos2~RXtan2~nR--47t2U = 0, (3.5) 

an equation which is similarly satisfied by 0. The boundary conditions (I3.24), 
(13.25), (2.7), (13.27) and (13.28) with a = 0 now become, in turn, 

U = O  on R = l ,  - l < X < l ,  (3.6) 

U = O  on X = - 1 ,  i < R < l ,  (3.7) 

0 = 0  on X = - 1 ,  O < R < i ,  (3.8) 

on X = l ,  $ < R < l ,  
h 

(1  f h2) tan2 inR 
U =  

- tan2idZ u=- on X = l ,  O < R < i ,  
1 + A 2  

(3.9) 

(3.10) 

(3.11) au - = 0  on R = i + ,  - 1 < X < O ,  aR 

(3.12) 

(3.13) 

, fJ -hU=-l  on R = $ ,  O < X < 1 .  (3.14) 
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In addition to the above we take advantage of the symmetry of the problem about 
r = R = 0, so that we require 

a0 - = 0  on R = O ,  - 1 , < X , < 1  aR (3.15) 

Our strategy is to solve (3.5), following discretization with standard central- 
difference formulae, using line relaxation, in each of the two regions 0 < R < +, 
1x1 ,< 1 ; t ,< R < 1,IXI ,< 1, separately. To achieve this we assign (3.13) as a boundary 
condition for U, and (3.14) for 0 on R = 8, 0 < X 6 1. Initially U is set to zero at each 
interior point and a linear variation is assumed for aO/aR on R = t ,  0 < X 6 1. 
Equation (3.5) is then solved in the upper region by successive sweeps from X = 1 to 
X = - 1 until a prescribed convergence criterion is reached. The solution obtained is 
then used to estimate Uon R = ifor use in (3.14). The equation (3.5) is then similarly 
solved for Gin the lower region and from that solution an updated estimate of aOpR 
at R = $ is obtained. This is used in (3.13) to obtain a new solution in the upper 
region. This procedure is continued until solutions in the upper and lower regions 
agree with the previously obtained solutions within some prescribed tolerance. In 
implementing this procedure it has been found expedient, in terms of efficiently 
reaching a fully converged solution, to begin with a relatively coarse convergence 
criterion and to reduce this gradually, following the completion of each upper and 
lower solution pair. In this manner we have been able to obtain solutions to any 
desired degree of accuracy. However, we note that in the range 0 6 h 6 1 converged 
solutions as A approaches unity are increasingly difficult to reach. For h = O ( O . l )  1.0 
we have obtained solutions for mesh size (8R, 8X) = (0.01,0.04) and for h = 0,0.5 
with mesh size (0.005,0.02). 

Before leaving this section we note that by working with the perturbation velocity 
vZ,@jz the eigenvalue c is eliminated from the boundary-value problem. For reasons 
which are not immediately clear the finite-difference method then selects the solution 
which satisfies the Kutta condition a t  the lip. A similar behaviour is observed in the 
numerical solution of the Euler equations for the compressible flow about a lifting 
aerofoil (see for example Lytton 1987). 

4. Results 
We first compare the numerical results from the totally different approaches 

described in ss3.1 and 3.2. Flow variations are largest near the lip, so we choose to 
look along the line r = 1 - ,8 = x ,  that is, on the windward generator inside the pipe 
and jet, between one pipe radius upstream and downstream of the lip. The quantity 
shown in figure 3 is the coefficient of E~ in the axial component of the disturbance 
velocity, namely 0 in 53.2, and the calculations are for h = 1. The results agree in 
showing that the decay of the disturbance upstream in the pipe, known to be 
exponential from (2.12b), is almost complete within one pipe radius; and that the 
square-root behaviour a t  the lip expected from the analysis appears, and that the 
axial velocity varies slowly, but smoothly, downstream of the lip. The discrepancy 
between the results corresponds to an axial displacement of about 0.056, which is less 
than the grid spacing in the axial direction at the orifice (0.0639). Since the boundary 
conditions are only imposed at the grid points, there is an uncertainty of this order 
in the location of the lip in the finite-difference solution and greater accuracy cannot 
be expected. Such a degree of accuracy is regarded as acceptable and results of the 
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-0.5 
X 

0 0.5 
I 

-0.1 

-0.2 

D 

-0.3 

-0.4 

FIGURE 3. Axial component 0 of disturbance velocity for A = 1 on r = 1 - near the orifice: 
-, analytical solution ; 0,  numerical solution. 

finite-difference calculations are relied on in the remainder of this section ; however, 
we prefer to present results obtained on the finer grid, and choose h = i. 

From (13.23) and (2.12) it is clear that the radial component of velocity in the near 
field can be written as 

€2wr(r, x) cos 28. (4.1) 

v, is shown in figure 4 as a function of x for r = 0.5095 (within the pipe and jet), 
r = 1 - (along the inner surfaces of the pipe and vortex sheet), r = 1 + (along their 
outer surfaces), and r = 1.4966 (outside the pipe and jet). On the pipe, 'u, = 0, in 
accordance with the boundary condition there, and, on the vortex sheet w,( l  - , x) = 
2vr(l + , x), in accordance with the kinematic boundary condition (13.28~) there. The 
uncertainty about the position of the lip remarked on above is only half as large as 
in figure 3, in accordance with the finer grid. The function w, appears to be negative 
everywhere, except for some very small positive values upstream in the external 
flow. This means that the flow is effectively inwards towards the axis when 
cos28 > 0, in the windward and leeward quadrants, and away from the axis when 
cos28 < 0, in the lateral quadrants. This is consistent with the lateral flattening of 
the jet which is a feature of the larger-scale solution, as discussed in I. The curves are 
seen to become straight to the right of figure 4, corresponding to the linearity in x of 
the asymptotic expressions (2.7). The asymptotic directions of these lines are 
specified by the boundary conditions (3.9) and (3.10), but it is remarkable that these 
slopes are attained within one pipe radius of the orifice. The straight line 
approximations to the curves provide an independent, though imprecise, deter- 
mination of A = -c ,  through (2.7). This is consistent with the value plotted in 
figure 2 for A = i, allowing for the uncertainty in the position of the lip. On the left 
of figure 4, we note the rapid decay of the disturbance both outside and inside the 
pipe. The infinite slope of the curves for r = I + and 1 - on the downstream side of 
the lip shows that the curvature of the meridional sections of the vortex sheet is 
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X 

-0.5 0 0.5 

-0.5 

V,  

- 1.0 

FIGURE 4. Radial component v, of disturbance velocity for h = $ near the orifice at various 
distances, r ,  from the axis. 

FIGURE 5. Axial component v, of disturbance velocity for h = 4 near the orifice at various 
distances, r ,  from the axis. 

infinite at  the lip, except where cos28 = 0. This represents a significant departure, 
due to a term O(s2xi) for x Q 1, from the finite curvature of the vortex sheet in the 
far-field determined from (2.3). 

In the same way, referring to (13.23) and (2.12), we can write the axial component 
of the disturbance velocity in the near field as 

E2v2(r, 2) cos 28, (4.2) 
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I 1 

FIGURE 6. Axial component v, of disturbance velocity for A = f at various axial stations, x, 
near the orifice. 

where the leading term is unity inside the pipe and jet, and A (= t )  outside. w, is 
shown in figure 5 as a function of x for the same four values oft .  We see at once that 
the axial velocity is increased outside the pipe and jet in the windward and leeward 
quadrants and decreased in the lateral quadrants. This is what would be expected 
from the lateral flattening of the jet. Inside the pipe and the jet the sign of the 
disturbance velocity is reversed, which is also consistent with this jet deformation. 
The asymptotic behaviour, constant for w, in accordance with (2.7), is reached 
quickly. Indeed, on the vortex sheet the asymptotic level is closely approximated at 
the lip, apparently driven by the need to satisfy the kinematic boundary condition 
(13.286) on the vortex sheet. On the left of the figure, the decay inside the pipe is 
rather more marked than that outside. The infinite slopes of the curves for r = 1 + 
and 1 - represent an infinite acceleration of the fluid on the outside of the pipe and 
an infinite deceleration on the inside, for cos28 > 0. These arise from the infinite 
curvature of the vortex sheet discussed above in relation to figure 4. Comparing the 
curve for r = 1 - with figure 3, we see that the effect of a change in A on the flow 
inside the pipe is primarily a change of scale. In each case, by x = -0.5 the 
disturbance velocity has fallen to about 12 % of its maximum value, and by x = - 1 
to about 0.3 YO. The scale is determined, in terms of A, by the asymptotic behaviour 
(2.7). 

The dependence of w, on r is illustrated in figure 6 for four values of x: - 1 
(upstream of the orifice), 0 (at the orifice), 0.1908 (near the orifice on the downstream 
side) and 1 (downstream of the orifice). fv,l decreases away from the cylinder r = 1 
in both directions. Inside it falls to zero like r2 as the axis is approached. At  the 
upstream station the decay outside the pipe is very slow, but the level is low. The 
profiles a t  x = 0.1908 are more concave than those at  x = 1, because the levels at  
r = 1 + and 1 - are maintained, as discussed in relation to figure 5, and the smaller 
disturbance levels upstream of the orifice influence the values at the intermediate 
values of r .  The profiles for x = 0 do not show this concavity because the solution 
there is affected by the finite mesh interval. 

The result without the Kutta condition, as given in I and evaluated numerically 
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2.0 r 

axial 

by Lytton & Smith (1988), shows the same asymptotic behaviour at  large distances 
from the orifice, but exhibits the expected square-root singularity a t  the lip. vr tends 
to infinity through positive values as the lip is approached along the jet boundary, 
r = l + , x  > 0;  while w, tends to infinity through positive values as the lip is 
approached along the inside of the pipe, r = 1 - , x < 0, and through negative values 
on the outside of the pipe, r = l + , x  < 0. 

From (13.23) and (13.13), the third, circumferential, component of velocity has a 
leading term - B (  1 sin 8 outside the pipe and jet, corresponding to  the flow 
round a circular cylinder. The next term can be written as 

(4.3) e2vo(r, x) sin 28. 
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The variation of vg with r for x = - 1,0,0.1908 and 1 is displayed in figures 7 ( a )  and 
7(b), where the change in scale is needed to show the behaviour a t  both x = - 1 and 
+ 1. The most striking feature of figure 7 (a) is the linear variation of vg with r inside 
the jet at x = 1. This agrees with the asymptotic behaviour implied by (2.7) to within 
the uncertainty in the lip position. It represents the circumferential velocity which 
corresponds, on a planar flow basis, to the radial inflow along 8 = 0 and R and outflow 
along 8 =+in. The profile outside the jet a t  x = 1 is nearly as close to the 
corresponding asymptotic behaviour given by (2.7). Even at  x = 0.1908, the levels of 
vo a t  r = 1 are very close to their asymptotic values, though the profiles are somewhat 
distorted by the proximity of the orifice. In figure 7 ( b )  we notice particularly that vg 
reaches a maximum within the pipe. I ts  radial derivative should also vanish on the 
pipe wall, as it is seen to do at x = - 1, though the numerical treatment fails to 
enforce the behaviour a t  the lip. The rate of decay of vo outside the pipe falls off 
upstream, like that of v, in figure 6. 

A final comment is based on the numerical values of the functions in figures 4-7. 
These all lie between f 2 .  Consequently, if E is restricted to the level of about 0.1 for 
which we should expect the small disturbance assumptions to be justified, the 
contribution to the velocity field from the terms 0 ( e 2 )  in (13.23) remains small in the 
near field, similarly, since c < 1 in the range 0 6 h < 1, the additional term 
introduced into the outer solution (2.1)-(2.3) also remains small. It follows that the 
near field; similarly, since c < 1 in the range 0 < h < 1, the additional term 
convective velocity in it,  and figure 4 of I remains a valid representation. Apart from 
its principal role in reconciling the larger-scale solution with the pipe geometry, the 
near-field solution is significant in several respects. We have already mentioned how 
it determines the origin shift, c ,  and its introduction of an infinite curvature in the 
vortex sheet. It also affects the pressure variation to leading order. We find, from 
Bernoulli’s equation, for the near-field behaviour : 

(4.4) 
1 cOs2e p - p  =-&2 

2r4 r2 
9-p m = - E ~ ( ~ + V ~ C O S ~ ~ )  for r < 1. 

m 

9-p m = - E ~ ( ~ + V ~ C O S ~ ~ )  for r < 1. J 
(4.4) 

However, we have seen that, on the jet, w, reaches its asymptotic value immediately 
downstream of the orifice, so the jet pressures as calculated from the larger-scale 
solution in I remain correct. 

5. Conclusions 
(a) The solution obtained in I has been modified so as to satisfy a Kutta condition 

of smooth outflow at the pipe lip. 
( b )  The effect of this modification on the larger-scale flow is simply an upstream 

shift of its effective origin by about a quarter of the pipe radius. 
( c )  The complicated expressions representing the disturbance potential in the pipe 

and in the jet near the orifice have been shown numerically to join continuously and 
smoothly a t  the orifice. 

( d )  Comparison with the origin shift calculated by Coelho & Hunt (1989) for 
h = 0 shows that the reservation expressed in I about the applicability of the 
Wiener-Hopf technique for values of h too far from unity is unnecessary in the range, 
0 < h < 1, of most relevance. 
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( e )  The disturbance to the flow inside the pipe, shown in I to decay exponentially 
with distance upstream, is found numerically to be very small at a distance of one 
pipe radius from the orifice. 
(f) The disturbance to the larger-scale flow in and outside the jet due to the 

presence of the orifice also decays almost completely within one pipe radius 
downstream of it. 

(9) Satisfying a Kutta condition at the lip of the pipe makes a qualitative 
difference to the flow pattern near the lip. Numerical calculations based on I and 
presented in Lytton & Smith (1988) show streamlines negotiating the lip from the jet 
to the outer surface of the pipe over the forward and rearward quadrants and from 
the outer flow to the inside of the pipe over the lateral quadrants. This predicted 
behaviour, which does not represent that of a real fluid, is now replaced by a smooth 
departure of the streamlines from the lip of the pipe. 

(h) For the small values of E for which the small-disturbance approach is likely to 
be valid, the effect of the near-field solution on the velocity field is very small, and 
the figures reproduced in I remain representative. 

This work has been carried out with the support of the Procurement Executive, 
Ministry of Defence. 
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